产品中心PRODUCTS CENTER
技术文章您现在的位置:首页 > 技术文章 > 浅谈光储微电网混合储能系统的控制策略

浅谈光储微电网混合储能系统的控制策略

更新时间:2024-05-11   点击次数:69次

摘要:随着社会生产力的不断提高,资源的大量消耗,人们已经意识到发展可再生能源的重要性,因此微电网技术作为再生能源利用的有效形式被快速发展。蓄电池容量无限大是传统光储微电网混合储能系统控制策略一种理想形式,但实际上蓄电池的容量是有限度的,传统控制策略在蓄电池剩余电量达到阖值时将无法正常使用,由此提出了光储微电网混合储能系统的新型控制策略,又结合实际情况,对开关进行了改进,利用开关与二极管并联,使其拥有四种工作状态,当储能元件剩余电量达到阈值时,可自动恢复电量降低成本,提高并输出电池电能质量。

关键词:光储微电网;控制策略;开关优化

0、前言

在微电网运行过程中,光储能系统可以使系统中的能量进行缓冲,是微电网运行中环节,由于经济原因光储能设备的配置不应太高,在选择储能系统容量与额定功率时要结合实际情况,选用合适的设备配置,提高微电网安全经济的运行。目前市场上储能功率容量大小,没有统一的规定,这是由于混合储系统中储能介质之间功率分配及容量优化所导致的,因此需要对此进行深入的研究,笔者在独立微电网到并网微电网,从单一储能到混合储能,做了较为立体的研究,在开关优化方面也做了一些相关的介绍,并得到了一些有意义的结论。

1、光储微电网混合储能系统

独立型微电网:结合仿真实验,在满足供电可靠的前提下,弃置部分过剩能量可以使得所需的储能容量维持在较低水平,克服了传统的储能容量在运行中逐渐增加的缺陷。如何减小储能容量,通过实验发现选用光伏发电院与风力发电混合比例可以达到。通过提高微电网发电充裕度,可以降低微电网对储能的需求,并对光伏发电和风力发电的比例混合产生影响。

储能系统与微电网:等效微电网的调度效果是利用储能系统补偿,可再生能源发电预测性误差所产生的,它是针对可再生能源发电系统中微电网与储能系统配合发电的运行机制。通过分析,可再生能源发电预测误差的概率分布,运用区间估计和概率理论的方法大致获得储能系统的容量和功率,在此基础上可以预测储能配置与准确性的关系,能够进一步得出微电网中储能分散配置与集中配置对储存能量的影响,通过实验结果可以得出,充分利用各个装置的可用容量减小微电网系统的容量,从这一角度而言,集中配置好于分散配置。

能装置分析:通过科学实验比较以锂电池为代表的能量型储能装置和超级电容为代表的功率型储能装置,在平滑能量波动方面的特性,得出结果表明功率型储能装置可以平滑短时功率波动,但对常识功率波动表现不佳,能量型储能装置可以平滑,小浮动功率波动,特别在平滑常识波动过洞中最能发挥其优势,却难以适应大幅波动情况。

混合储能系统分析:考虑到单一功率型和能量型储存装置在平滑功率时的波动局限性,可以将两者有机的结合到一起组成混合储能系统,从而发挥其各自长处,通过控制理论功率优化分配法,可以降低混合系统的总成本。通过运用遗传算法使各储能间的充放电功率约束荷电状态,满足平滑目标的柔性约束,达到混合系统配置。通过实验仿真结果表明,功率优化分配方法可以充分发挥两种介质的优点,了解的状态设定的范围内并有效的减少能量的储能充电次数,并在柔性约束优化问题中,采用遗传算法求解,能够使用优化问题收敛至解。另外通过仿真结果表明适当的放松充电次数,可以有效的减少混合储能系统的容量与功率,可以结合实际成本,进行混合储能的系统配。

储能元件保护开关优化:在故障发生或天气的情况下,原件的保护开关发挥着重要作用,为防止储能元件过充与过放,在储能元件soc达到阈值时将其从电网断开。传统的保护开关只有断开和闭合的功能。这就使开关在断开后,需要独立的充放电路,将储能元件soc恢复到正常水平,才能在接入电网;其过程非常繁琐,并且成本也很高,针对这种情况,笔者对保护电路进行改造,通过两个开关,两个二极管并联组成,使保护电路形成四种不同的工作状态,当储能元件Soc到达上,一个开关导通,一个开关断开,储能原件只放电,并且防止原件同时自动恢复电量独立放电电路,从而降低成本,soc下线时同里,改进保护开关结合上文中的改进控制策略就可以实现储能原件恢复电量的同时,平抑光伏输入功率波动平滑,并网输出功率,提高并网电能质量。

2、光储微电网混合储能系统发展展望

在对独立性微电网储能系统控制策略研究时,从储能容量最小方向进行研究的,仿真结果表明储能放电效率对光伏风电优化比例及储能容量存在一定的影响,具体产生的原因,本文中没有进一步讨论。

在比较能量型储能与功率型储能在平华可再生能源功率波动方面性能差异时,只是在投资成本相同的前提下额定容量和额定功率,这之间未考虑想用速度方面的影响。另外,不同的储能戒指成本也不是随着额定容量和额定功率现金增长的因素,也未能考虑。

3、Acrel-2000MG微电网能量管理系统概述

3.1概述

Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的先进经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电桩的接入,全天候进行数据采集分析,直接监视光伏、风能、储能系统、充电桩运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统在安全稳定的基础上以经济优化运行为目标,促进可再生能源应用,提高电网运行稳定性、补偿负荷波动;有效实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。

微电网能量管理系统应采用分层分布式结构,整个能量管理系统在物理上分为三个层:设备层、网络通信层和站控层。站级通信网络采用标准以太网及TCP/IP通信协议,物理媒介可以为光纤、网线、屏蔽双绞线等。系统支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。

3.2技术标准

本方案遵循的国家标准有:

本技术规范书提供的设备应满足以下规定、法规和行业标准:

GB/T26802.1-2011工业控制计算机系统通用规范第1部分:通用要求

GB/T26806.2-2011工业控制计算机系统工业控制计算机基本平台第2部分:性能评定方法

GB/T26802.5-2011工业控制计算机系统通用规范第5部分:场地安全要求

GB/T26802.6-2011工业控制计算机系统通用规范第6部分:验收大纲

GB/T2887-2011计算机场地通用规范

GB/T20270-2006信息安全技术网络基础安全技术要求

GB50174-2018电子信息系统机房设计规范

DL/T634.5101远动设备及系统第5-101部分:传输规约基本远动任务配套标准

DL/T634.5104远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-网络访问101

GB/T33589-2017微电网接入电力系统技术规定

GB/T36274-2018微电网能量管理系统技术规范

GB/T51341-2018微电网工程设计标准

GB/T36270-2018微电网监控系统技术规范

DL/T1864-2018独立型微电网监控系统技术规范

T/CEC182-2018微电网并网调度运行规范

T/CEC150-2018低压微电网并网一体化装置技术规范

T/CEC151-2018并网型交直流混合微电网运行与控制技术规范

T/CEC152-2018并网型微电网需求响应技术要求

T/CEC153-2018并网型微电网负荷管理技术导则

T/CEC182-2018微电网并网调度运行规范

T/CEC5005-2018微电网工程设计规范

NB/T10148-2019微电网第1部分:微电网规划设计导则

NB/T10149-2019微电网第2部分:微电网运行导则

3.3适用场合

系统可应用于城市、高速公路、工业园区、工商业区、居民区、智能建筑、海岛、无电地区可再生能源系统监控和能量管理需求。

3.4型号说明

image.png

3.5系统配置


3.5.1系统架构


本平台采用分层分布式结构进行设计,即站控层、网络层和设备层,详细拓扑结构如下:

 

3.6系统功能


3.6.1实时监测


微电网能量管理系统人机界面友好,应能够以系统一次电气图的形式直观显示各电气回路的运行状态,实时监测各回路电压、电流、功率、功率因数等电参数信息,动态监视各回路断路器、隔离开关等合、分闸状态及有关故障、告警等信号。其中,各子系统回路电参量主要有:三相电流、三相电压、总有功功率、总无功功率、总功率因数、频率和正向有功电能累计值;状态参数主要有:开关状态、断路器故障脱扣告警等。


系统应可以对分布式电源、储能系统进行发电管理,使管理人员实时掌握发电单元的出力信息、收益信息、储能荷电状态及发电单元与储能单元运行功率设置等。


系统应可以对储能系统进行状态管理,能够根据储能系统的荷电状态进行及时告警,并支持定期的电池维护。


微电网能量管理系统的监控系统界面包括系统主界面,包含微电网光伏、风电、储能、充电桩及总体负荷组成情况,包括收益信息、天气信息、节能减排信息、功率信息、电量信息、电压电流情况等。根据不同的需求,也可将充电,储能及光伏系统信息进行显示。

image.png

图2系统主界面


子界面主要包括系统主接线图、光伏信息、风电信息、储能信息、充电桩信息、通讯状况及一些统计列表等。


3.6.1.1光伏界面

image.png

本界面用来展示对光伏系统信息,主要包括逆变器直流侧、交流侧运行状态监测及报警、逆变器及电站发电量统计及分析、并网柜电力监测及发电量统计、电站发电量年有效利用小时数统计、发电收益统计、碳减排统计、辐照度/风力/环境温湿度监测、发电功率模拟及效率分析;同时对系统的总功率、电压电流及各个逆变器的运行数据进行展示。3.6.1.2储能界面

image.png

本界面主要用来展示本系统的储能装机容量、储能当前充放电量、收益、SOC变化曲线以及电量变化曲线。

image.png

3.6.1.5视频监控界面

image.png

图15微电网视频监控界面


本界面主要展示系统所接入的视频画面,且通过不同的配置,实现预览、回放、管理与控制等。


3.6.2发电预测


系统应可以通过历史发电数据、实测数据、未来天气预测数据,对分布式发电进行短期、超短期发电功率预测,并展示合格率及误差分析。根据功率预测可进行人工输入或者自动生成发电计划,便于用户对该系统新能源发电的集中管控。

image.png